If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x=96
We move all terms to the left:
4x^2+10x-(96)=0
a = 4; b = 10; c = -96;
Δ = b2-4ac
Δ = 102-4·4·(-96)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{409}}{2*4}=\frac{-10-2\sqrt{409}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{409}}{2*4}=\frac{-10+2\sqrt{409}}{8} $
| z3=2 | | 13/11=x/9 | | (z+5/6)-(z+1/9)=(z+3/4) | | (p-5)=8 | | w+1/3=5 | | b-(-9)=-5 | | x/25=8/10 | | 4x^2-x=3x^2 | | b-(-9)= | | 7r+4=9r | | 10x-42=-12 | | 279=182-x | | (z-1)/3=-1/5 | | x-9/10=4x+1/6 | | 2f+5=1 | | -60=-18+4n | | 4x-1*2=x+7* | | 6(-2g-1)=-(13+2) | | 2x-4(3x-12)=-62 | | 7=5/6c=-8 | | 2x+12=-44-6 | | (2d+7/6)-(d-5/3)=0 | | -5/3w=-15 | | 5p+2=6-2p | | -3+-5478b=87 | | 124=-4x-4(2x-7) | | 7y+12=2y-5 | | +7+6y=13 | | 11(3.14)+2x=19(3.14) | | (4x+1/3)+(2x-1/2)-(3x-7/5)=6 | | –8a–4=44 | | 7w+4=4w+34 |